Аналитическая геометрия - определение. Что такое Аналитическая геометрия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Аналитическая геометрия - определение

РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
Ангем
  • [[Декартова система координат]]
Найдено результатов: 242
Аналитическая геометрия         

раздел геометрии. Основными понятиями А. г. являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности второго порядка). Основными средствами исследования в А. г. служат метод координат (см. ниже) и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в 17 в. Отчётливое и исчерпывающее изложение этого метода и основ А. г. было сделано P. Декартом в его "Геометрии" (1637). Основные идеи метода были известны также его современнику П. Ферма. Дальнейшая разработка А. г. связана с трудами Г. Лейбница, И. Ньютона и особенно Л. Эйлера. Средствами А. г. пользовался Ж. Лагранж при построении аналитической механики и Г. Монж в дифференциальной геометрии. Ныне А. г. не имеет самостоятельного значения как наука, однако её методы широко применяются в различных разделах математики, механики, физики и др. наук.

Сущность метода координат заключается в следующем. Рассмотрим, например, на плоскости π две взаимно перпендикулярные прямые Ox и Оу (рис. 1). Эти прямые с указанным на них направлением, началом координат О и выбранной масштабной единицей е образуют т. н. декартову прямоугольную систему координат Оху на плоскости. Прямые Ox и Оу называются соответственно осью абсцисс и осью ординат. Положение любой точки М на плоскости по отношению к этой системе Оху можно определить следующим образом. Пусть Mx и My - проекции М на Ox: и Оу, а числа х и y - величины отрезков OMx и ОМу (величина х отрезка OMx, например, равна длине этого отрезка, взятой со знаком плюс, если направление от О к Mx совпадает с направлением на прямой Ox, и со знаком минус в противоположном случае). Числа х и у называются декартовыми прямоугольными координатами точки М в системе Оху. Обычно они называются соответственно абсциссой и ординатой точки M. Для обозначения точки М с абсциссой х и ординатой у пользуются символом М(х,у). Ясно, что координаты точки М определяют её положение относительно системы Оху.

Пусть на плоскости π с данной декартовой прямоугольной системой координат Оху задана некоторая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии L относительно системы Оху как соотношения вида F(x,y) = 0, которому удовлетворяют координаты х и у любой точки M, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Если, например, линия L является окружностью радиуса R с центром в начале координат O, то уравнение x2+ y2 - R2 = 0 будет уравнением рассматриваемой окружности, в чём можно убедиться, обратившись к рис. 2. Если точка М лежит на окружности, то по теореме Пифагора для треугольника OMMx получается x2 + y2 - R2 = 0. Если же точка не лежит на окружности, то, очевидно, x2 + y2 - R2 0. Итак, линии L на плоскости можно сопоставить её уравнение F(x,y) = 0 относительно системы координат Оху.

Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения F(x,y) = 0 этой линии. Например, применим метод координат для выяснения числа точек пересечения окружности С радиуса R и данной прямой линии В (рис. 3). Пусть начало системы координат Оху находится в центре окружности, а ось Ox направлена перпендикулярно прямой В. Так как прямая В перпендикулярна оси Ox, то абсцисса любой точки этой прямой равна некоторой постоянной a. Т. о., уравнение прямой В имеет вид x - a = 0. Координаты (x, y) точки пересечения окружности С (ур-ние которой имеет вид x2 + y2 - R2 = 0) и прямой В удовлетворяют одновременно уравнениям

x2 + y2 - R2 = 0, х - а = 0, (1)

то есть являются решением системы (1). Следовательно, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы (1). Решая эту систему, получают х = a, у = ± R2 - a2. Итак, окружность и прямая могут пересекаться в двух точках (R2 > a2) (этот случай изображен на рис. 3), могут иметь одну общую точку (R2 = a2) (в этом случае прямая В касается окружности C) и не иметь общих точек (R2 < a2) (в этом случае прямая В лежит вне окружности C).

В А. г. на плоскости подробно изучаются геометрические свойства Эллипса, гиперболы (См. Гипербола) и параболы (См. Парабола), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). Эти линии часто встречаются во многих задачах естествознания и техники. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий; в инженерном деле для конструирования прожекторов, антенн и телескопов пользуются важным оптическим свойством параболы, заключающимся в том, что лучи света, исходящие из определённой точки (фокуса параболы), после отражения от параболы образуют параллельный пучок.

В А. г. на плоскости систематически исследуются т. н. алгебраические линии первого и второго порядков (эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями первой и второй степени). Линии первого порядка суть прямые, и обратно, каждая прямая определяется алгебраическим уравнением первой степени Ax + By + С = 0. Линии второго порядка определяются уравнениями вида Ax2 + Вху + Су2 + Dx + Еу + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Можно доказать, что таким способом уравнение любой вещественной линии второго порядка может быть приведено к одному из следующих простейших видов:

Первое из этих уравнений определяет эллипс, второе - гиперболу, третье - параболу, а последние два - пару прямых (пересекающихся, параллельных или слившихся).

В А. г. в пространстве также пользуются методом координат. При этом декартовы прямоугольные координаты .x, у и z (абсцисса, ордината и апликата) точки М вводятся в полной аналогии с плоским случаем (рис. 4). Каждой поверхности S в пространстве можно сопоставить её уравнение F (x, y, z) =0 относительно системы координат Oxyz. (Так, например, уравнение сферы радиуса R с центром в начале координат имеет вид x2 + y2 + z2 - R2 = 0.) При этом геометрические свойства поверхности S выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности. Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S1. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 - уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую L в пространстве можно рассматривать как линию пересечения двух плоскостей. Так как плоскость в пространстве определяется уравнением вида Ax + By + Cz + D = 0, то пара уравнений такого вида, рассматриваемая совместно, представляет собой уравнение прямой L. Т. о., метод координат может применяться и для исследования линий в пространстве. В A. г. в пространстве систематически исследуются т. н. алгебраические поверхности первого и второго порядков. Выясняется, что алгебраическими поверхностями первого порядка являются лишь плоскости. Поверхности второго порядка определяются уравнениями вида:

Ax2 + By2 + Cz2 + Dxy + Eyz + Fxz + Gx + Ну + Mz + N = 0.

Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Важнейшими вещественными поверхностями второго порядка являются Эллипсоиды, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический Параболоиды. Эти поверхности в специально выбранных декартовых прямоугольных системах координат имеют следующие уравнения:

Перечисленные важнейшие поверхности второго порядка часто встречаются в различных вопросах механики, физики твёрдого тела, теоретической физике и инженерном деле. Так, при изучении напряжений, возникающих в твёрдом теле, пользуются понятием т. н: эллипсоид напряжений. В различных инженерных сооружениях применяются конструкции в форме гиперболоидов и параболоидов.

Лит.: Декарт Р., Геометрия, [пер. с франц.], М.-Л., 1938; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; Ефимов Н. В., Краткий курс аналитической геометрии, 9 изд., М., 1967; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1967; Александров П. С., Лекции по аналитической геометрии, М., 1968; Бахвалов С. В., Моденов П. С., Пархоменко А. С., Сборник задач по аналитической геометрии, 3 изд., М., 1964; Клетеник Д. В., Сборник задач по аналитической геометрии, 9 изд., М., 1967.

Э. Г. Позняк.

Рисунки 1, 2, 3 к ст. Аналитическая геометрия.

Рис. 4. к ст. Аналитическая геометрия.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ         
раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего трактата Рассуждение о методе, озаглавленной Геометрия (1637). Однако сам метод был известен П.Ферма еще в 1629, о чем свидетельствует его переписка. Аналитическая геометрия стала неоценимым подспорьем для математического анализа, изобретенного вскоре Ньютоном (1665-1666) и Лейбницем (1675-1676).
Методы аналитической геометрии применимы к фигурам на плоскости и к поверхностям в трехмерном пространстве, а также допускают естественное обобщение и на пространства более высоких размерностей. Мы начнем с аналитической геометрии на плоскости.
Сущность метода координат состоит в следующем. На плоскости задаются две взаимно перпендикулярные прямые (координатные оси), пересекающиеся в точке О, называемой началом координат. Одна из них - ось x, или ось абсцисс, обычно выбирается горизонтальной, другая - ось y, или ось ординат, - вертикальной. Справа от O выбирается точка, у которой ставится отметка 1. Если принять отрезок от O до 1 за единицу длины, то откладывая последовательно этот отрезок вдоль прямой, мы получаем числовую ось. Считается, что эта ось продолжается вправо до бесконечности. Точки на оси x слева от O помечаются отрицательными числами, как на шкале термометра. Например, точка ?2 расположена от точки O слева на таком же расстоянии, как точка 2 справа. Аналогичным образом с той же единицей длины размечается и ось y. Положительные числа располагаются выше точки O, отрицательные - ниже.
Пусть P - любая точка на плоскости с заданной системой координат, Q - основание перпендикуляра, опущенного из P на ось x, а R - основание перпендикуляра, опущенного из P на ось y. Положение точки P полностью определяется двумя числами, называемыми координатами x и y. Первая координата указывает положение точки Q на оси x, вторая - положение точки R на оси y. На рис. 1 положение точки P полностью определяется ее координатами (2,3).
Основная задача аналитической геометрии заключается в изучении геометрических фигур с помощью соотношений между координатами точек, из которых эти фигуры образованы. Любую фигуру можно рассматривать как множество точек, удовлетворяющих некоторому геометрическому условию. Это условие можно записать в виде алгебраического уравнения, связывающего координаты x и y каждой точки фигуры. Суть метода аналитической геометрии состоит в изучении свойств фигуры с помощью соответствующего уравнения, исследуемого средствами алгебры. Этот метод позволяет устанавливать геометрические факты систематичным образом, в отличие от традиционной "синтетической" геометрии, где приходилось изобретать методы доказательства для каждого отдельного случая.
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точками P1 = (x1,y1) и P2 = (x2,y2). Числа x1, y1, x2 и y2 могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 2 все числа выбраны положительными. Проведем через точку P1 горизонтальную прямую, а через точку P2 - вертикальную. Пусть R - точка их пересечения. Тогда по теореме Пифагора
откуда
d 2 = (x2 - x1)2 + (y2 - y1)2.
Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки P1 и P2. Например, если точка P2 расположена ниже точки P1 и справа от нее, как на рис. 3, то отрезок RP2 можно считать равным y1 - y2, а не y2 - y1. Расстояние между точками, вычисляемое по формуле, от этого не изменится, так как (y1 - y2)2 = (y2 - y1)2. Заметим, что так как величина y2 в этом случае отрицательна, разность y1 - y2 больше, чем y1, как и должно быть.
Прямые. Прямая - одна из простейших геометрических фигур. Алгебраическое уравнение прямой также имеет простой вид.
Пусть B = (0,b)- точка пересечения прямой L с осью y, а P = (x,y) - любая другая точка на этой прямой. Проведем через точку B прямую, параллельную оси x, а через точку P - прямую, параллельную оси y; проведем также прямую x = 1. Пусть m - угловой коэффициент прямой L (см. рис. 4). Так как треугольники BSQ и BRP подобны, то
или, после упрощения,
Следовательно, если точка P лежит на прямой L, то ее координаты удовлетворяют уравнению (1). Обратно, нетрудно показать, что если x и y связаны между собой уравнением (1), то точка P непременно лежит на прямой L, проходящей через точку (0,b) и имеющей угловой коэффициент m.
Таким образом, уравнение любой прямой можно записать в виде
В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени по x и y можно привести к виду (2) либо (3).
Рассмотрим произвольное уравнение первой степени
Если B . 0, мы можем записать уравнение (4) в виде
т.е. в виде (2). При B = 0 уравнение (4) сводится к уравнению
Ax = C,
или
т.е. к уравнению вида (3).
Таким образом, любая прямая описывается уравнением первой степени по x и y, и обратно, каждое уравнение первой степени по x и y соответствует некоторой прямой.
Парабола. Методы аналитической геометрии позволяют без особых трудностей исследовать свойства кривых, которые обычно не рассматриваются в стандартных учебниках планиметрии.
Пусть заданы точка F с координатами (0,1) и прямая y = -1 (рис. 5). Множество точек P = (x,y), для которых расстояние PF равно расстоянию PD, называется параболой. Прямая y = -1 называется директрисой параболы, а точка F - фокусом параболы. Чтобы выяснить, как располагаются точки P, удовлетворяющие условию PF = PD, запишем его с помощью координат:
x2 + (y - 1)2 = (y + 1)2 + (x - x)2,
или после упрощения x2 = 4y. Это уравнение геометрического места точек, образующих параболу.
Рассмотрим теперь точки пересечения произвольной невертикальной прямой y = mx + b с параболой x2 = 4y. Точки пересечения должны иметь координаты, удовлетворяющие одновременно обоим уравнениям, поэтому
x2 = 4mx + 4b,
или
x2 - 4mx - 4b = 0.
В общем случае существуют два решения x1 и x2 квадратного уравнения. Известно, что сумма этих решений x1 + x2 равна коэффициенту при x, взятому со знаком минус. Следовательно,
x1 + x2 = 4m.
Абсцисса средней точки M хорды P1P2 равна
Результат зависит только от m и не зависит от b.
Если теперь мы рассмотрим множество параллельных прямых с одним и тем же угловым коэффициентом m, но с различными значениями b, то середины всех хорд, высекаемых на этих прямых параболой, лежат на вертикальной прямой x = 2m (см. рис. 6).
Среди этих параллельных прямых есть одна особенная прямая T, пересекающая параболу только в одной точке. Эта прямая называется касательной. Точка касания P имеет координаты (2m,m2).
Преобразование уравнений. Уравнение кривой зависит от положения координатных осей и от выбранных масштабов. Например, уравнение окружности с радиусом r единиц и с центром в начале координат имеет вид
x2 + y2 = r2.
Но если окружность расположена так, как показано на рис. 7, с центром в точке с координатами (h,k), то ее уравнение принимает более сложный вид:
(x - h)2 + (y - k)2 = r2,
в чем нетрудно убедиться, воспользовавшись формулой расстояния. Для исследования свойств кривой удобно расположить оси так, чтобы уравнение приняло по возможности более простой вид, как мы поступили в случае параболы.
До сих пор мы исследовали кривую, заданную некоторым геометрическим условием, которому должны удовлетворять все принадлежащие ей точки, и вывели уравнение относительно заданной пары координатных осей. Обратная задача состоит в том, чтобы построить кривую, соответствующую данному уравнению, и исследовать геометрические свойства этой кривой или ее графика.
Предположим, что мы хотим исследовать график кривой
Перепишем это соотношение в виде
y = x2 - 2x + 1 + 2 = (x - 1)2 + 2.
Сделав затем замену переменных x. = x - 1 и y. = y - 2, сведем (5) к следующему уравнению:
которое, конечно, гораздо проще. Теперь заданную кривую можно записать в новой системе, оси которой параллельны старым с началом координат в точке x = 1, y = 2. Помимо такого приема (называемого параллельным переносом) - сдвига осей координат по горизонтали и по вертикали на соответствующие величины, уравнения часто упрощаются после поворота системы координат на некоторый угол вокруг неподвижного начала координат O.
Оказывается, что этих двух приемов - параллельного переноса и поворота координатных осей, выполняемых по отдельности или вместе, - вполне достаточно, чтобы привести уравнение второй степени или к уравнениям двух прямых (пересекающихся, параллельных или совпадающих) или к одному из стандартных видов:
Уравнение (7) описывает параболу с фокусом в точке (0,p) и директрисой y = - p. Уравнение (8) соответствует эллипсу. Уравнение (9) описывает гиперболу (см. также КОНИЧЕСКИЕ СЕЧЕНИЯ).
Помимо исследования графиков алгебраических уравнений, аналитическая геометрия изучает также неалгебраические, или трансцендентные, кривые, например графики экспоненциальных, логарифмических и тригонометрических функций. В качестве примера трансцендентной кривой приведем циклоиду - кривую, описываемую точкой окружности, катящейся без скольжения по прямой (рис. 8). Если в качестве прямой выбрать ось абсцисс, а радиус окружности принять равным 1, то координаты точки P будут иметь вид
где . - угол в радианах.
Циклоида обладает многими замечательными свойствами. Длина дуги циклоиды в 8 раз больше, чем длина катящейся окружности, а площадь под дугой в 3 раза больше площади катящегося круга. Если циклоиду перевернуть, то мы получим форму нити, по которой бусина соскальзывала бы до данной точки за кратчайшее время. Эти результаты доказываются методами математического анализа, а последний из них - методами вариационного исчисления. Циклоиды и аналогичные кривые, возникающие при движении одной окружности по другой, играют важную роль при проектировании зубчатых передач, действующих бесшумно и эффективно. На рис. 9 вы видите несколько других кривых и их уравнения.
См. также:
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ         
раздел геометрии, в котором свойства геометрических образов (точек, линий, поверхностей) устанавливаются средствами алгебры при помощи метода координат, т. е. путем изучения свойств уравнений, графиками которых эти образы являются. В аналитической геометрии исследуются линии (поверхности) 1-го и 2-го порядков. Линии (поверхности) 1-го порядка - прямые (плоскости); среди линий (поверхностей) 2-го порядка - эллипсы, гиперболы, параболы (эллипсоиды, гиперболоиды, параболоиды). Аналитическую геометрию впервые изложил в 1-й пол. 17 в. Р. Декарт.
Аналитическая геометрия         
Аналити́ческая геоме́трия — раздел геометрии, в котором геометрические фигуры и их свойства исследуются средствами алгебры.
Жёсткость (геометрия)         
Жесткость (геометрия)
Жёсткость — свойство подмногообразия M в евклидовом пространстве (или, более обще, в пространстве постоянной кривизны), заключающееся в том, что любая его изометрическая вариация (бесконечно малое изгибание) является тривиальной, то есть соответствующее её поле скоростей на M индуцируется полем Киллинга на M. Вопрос о жёсткости подмногообразий — по существу вопрос о единственности решения системы дифференциальных уравнений, являющихся линеаризацией системы уравнений для изометричных изгибаний подмногообразия.
Вычислительная геометрия         
Компьютерная геометрия
Вычислительная геометрия — раздел информатики, в котором рассматриваются алгоритмы для решения геометрических задач.
Гиперболическая геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Лобачевского геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость

геометрическая теория, основанная на тех же основных посылках, что и обычная Евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Л. г. вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Л. г. имеет вполне реальный смысл (о чём см. ниже). Л. г. была создана и развита Н. И. Лобачевским (См. Лобачевский), который впервые сообщил о ней в 1826. Л. г. называется неевклидовой геометрией, хотя обычно термину "неевклидова геометрия" придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Л. г. и также основанные на изменении основных посылок евклидовой геометрии. Л. г. называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана) (см. Неевклидовы геометрии, Римана геометрия).

Л. г. представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Л. г. на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем "плоскостью". Точкой "плоскости" будет точка внутри круга. "Прямой" будем называть любую хорду (например, а, b, b', MN) (с исключенными концами, т. к. окружность круга исключена из "плоскости"). "Движением" назовем любое преобразование круга самого в себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Л. г. Иными словами, всякое утверждение Л. г. на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. "прямой"), проходит сколько угодно не пересекающих её хорд ("прямых") (например, b, b'). Аналогично, Л. г. в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах ("прямые" - хорды, "плоскости" - плоские сечения внутренности шара, "равные" фигуры - те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Л. г. имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Возникновение геометрии Лобачевского. Источником Л. г. послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в "Началах" Евклида (См. Начала Евклида)). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.

Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 - начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 - начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Л. г. подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829-30 напечатал работу "О началах геометрии" с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Л. г. развивалась как умозрительная теория и сам Лобачевский называл её "воображаемой геометрией", тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.

Интерпретации (модели) геометрии Лобачевского. Л. г. изучает свойства "плоскости Лобачевского" (в планиметрии) и "пространства Лобачевского" (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем - расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. г. состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. г. (об интерпретации вообще см. Геометрия, раздел Истолкования геометрии). Итальянский математик Э. Бельтрами в 1868 заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет Псевдосфера (рис. 2). Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, т. е. деформацией, сохраняющей длины, то всякой теореме Л. г. будет отвечать факт, имеющий место на псевдосфере. Т. о., Л. г. получает простой реальный смысл. При этом длины, углы, площади понимаются в смысле естественного измерения их на псевдосфере. Однако здесь даётся интерпретация только геометрии на куске плоскости Лобачевского, а не на всей плоскости и тем более не в пространстве (в 1901 Д. Гильберт доказал даже, что вообще в евклидовом пространстве не может существовать регулярной поверхности, геометрия на которой совпадает с геометрией всей плоскости Лобачевского).

В 1871 Ф. Клейн указал ту модель как всей плоскости, так и пространства Лобачевского, которая была описана выше и в которой плоскостью служит внутренность круга, а пространством - внутренность шара. Между прочим, в этой модели расстояние между точкам (рис. 1) определяется как ; угол - ещё сложнее.

Позже А. Пуанкаре в связи с задачами теории функций комплексного переменного дал другую модель. За плоскость Лобачевского принимается внутренность круга (рис. 3), прямыми считаются дуги окружностей, перпендикулярных окружности данного круга, и его диаметры, движениями - преобразования, получаемые комбинациями инверсий (См. Инверсия) относительно окружностей, дуги которых служат прямыми. Модель Пуанкаре замечательна тем, что в ней углы изображаются обычными углами. Исходя из таких соображений, можно строить модель Л. г. в пространстве.

Коротко модели Клейна и Пуанкаре можно определить так. В обоих случаях плоскостью Лобачевского может служить внутренность круга (пространством - внутренность шара), и Л. г. есть учение о тех свойствах фигур внутри круга (шара), которые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре - при конформных преобразованиях круга (шара) самого в себя (проективные преобразования есть те, которые переводят прямые в прямые, конформные - те, которые сохраняют углы).

Возможно чисто аналитическое определение модели Л. г. Например, точки плоскости можно определять как пары чисел х, у, прямые можно задавать уравнениями, движения - формулами, сопоставляющими точкам (х, у) новые точки (х', y'). Это будет абстрактно определённая аналитическая геометрия на плоскости Лобачевского, аналогично аналитической геометрии на плоскости Евклида. Т. к. Лобачевский дал основы своей аналитической геометрии, то тем самым он уже фактически наметил такую модель, хотя полное её построение выяснилось уже после того, как на основе работ Клейна и других выявилось само понятие о модели. Другое аналитическое определение Л. г. состоит в том, что Л. г. определяется как геометрия риманова пространства постоянной отрицательной кривизны (см. Римановы геометрии (См. Риманова геометрия)). Это определение было фактически дано ещё в 1854 Б. Риманом и включало модель Л. г. как геометрии на поверхностях постоянной кривизны. Однако Риман не связал прямо своих построений с Л. г., а его доклад, в котором он о них сообщил, не был понят и был опубликован лишь после его смерти (в 1868).

Содержание геометрии Лобачевского. Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, т. к. именно здесь начинается отличие Л. г. от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют т. н. абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились др. отделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Приведём несколько фактов Л. г., отличающих её от геометрии Евклида и установленных самим Лобачевским.

1) В Л. г. не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.

2) Сумма углов всякого треугольника меньше π и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность π - (α + β + γ), где α, β, γ - углы треугольника, пропорциональна его площади.

3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b', которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b') и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b' с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

8) Длина окружности не пропорциональна радиусу, а растет быстрее.

9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле "предельный" случай Л. г.

Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.

Приложения геометрии Лобачевского. Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию автоморфных функций (См. Автоморфная функция). Связь с Л. г. была здесь отправным пунктом исследований Пуанкаре, который писал, что "неевклидова геометрия есть ключ к решению всей задачи". Л. г. находит применение также в теории чисел, в её геометрических методах, объединённых под названием "геометрия чисел" (см. Чисел теория). Была установлена тесная связь Л. г. с кинематикой специальной (частной) теории относительности (см. Относительности теория). Эта связь основана на том, что равенство, выражающее закон распространения света

x2 + y2 + z2 = c2t2

при делении на t2, т. е. для скорости света, даёт

vx2 + vy2 + vz2 = c2

- уравнение сферы в пространстве с координатами vx, vy, vz - составляющими скорости по осям х, у, z (в "пространстве скоростей"). Лоренца преобразования сохраняют эту сферу и, т. к. они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с, т. е. для скоростей, меньших скорости света, имеет место Л. г.

Замечательное приложение Л. г. нашла в общей теории относительности (см. Тяготение). Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается, что при определённых условиях пространство имеет Л. г. Т. о., предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

Лит.: Лобачевский Н. И., Сочинения по геометрии, М. - Л., 1946-49 (Полн. собр. соч., т. 1-3); Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; Александров П. С., Что такое неевклидова геометрия, М., 1950; Делоне Б. Н., Элементарное доказательство непротиворечивости планиметрии Лобачевского, М., 1956; Широков П. А., Краткий очерк основ геометрии Лобачевского, М., 1955; Каган В. Ф., Лобачевский и его геометрия. Общедоступные очерки, М., 1955; его же, Геометрия Лобачевского и ее предистория, М. - Л., 1949 (Основания геометрии, ч. 1); Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Погорелов А. В., Основания геометрии, 3 изд., М., 1968; Розенфельд Б. А., Неевклидовы пространства, М., 1969; Нут Ю. Ю., Геометрия Лобачевского в аналитическом изложении, М., 1961; Андриевская М. Г., Аналитическая геометрия в пространстве Лобачевского, К., 1963.

А. Д. Александров.

Рис. 1 к ст. Лобачевского геометрия.

Рис. 2 к ст. Лобачевского геометрия.

Рис. 3 к ст. Лобачевского геометрия.

ЛОБАЧЕВСКОГО ГЕОМЕТРИЯ         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
построенная в 1826 Н. И. Лобачевским геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит: в плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. е. ее не пересекающую. В геометрии Лобачевского эта аксиома заменена следующей: в плоскости через точку, не лежащую на данной прямой, можно провести более одной прямой, не пересекающей данной. В геометрии Лобачевского многие теоремы отличны от аналогичных теорем евклидовой геометрии; напр., сумма углов треугольника меньше двух прямых, два подобных треугольника всегда равны между собой. Несмотря на внешнюю парадоксальность этих выводов, геометрия Лобачевского оказалась логически совершенно равноправной с евклидовой. Открытие неевклидовой геометрии Лобачевского внесло коренные изменения в представления о природе пространства.

Википедия

Аналитическая геометрия

Аналити́ческая геоме́трия — раздел геометрии, в котором геометрические фигуры и их свойства исследуются средствами алгебры.

В основе этого метода лежит так называемый метод координат, впервые применённый Декартом в 1637 году. Каждому геометрическому соотношению этот метод ставит в соответствие некоторое уравнение, связывающее координаты фигуры или тела. Такой метод «алгебраизации» геометрических свойств доказал свою универсальность и плодотворно применяется во многих естественных науках и в технике. В математике аналитическая геометрия является также основой для других разделов геометрии — например, дифференциальной, алгебраической, комбинаторной и вычислительной геометрии.